
More Geometric Data 
Structures



Windowing

• Consider a mapping application (Waze for example)

• The entire map contains huge amount of objects.

• However, at any given time, we need to display a small amount, just 
the object in our screen.



Windowing

• We have seen how to find points in a region, but what about other objects?

• We will begin with a simpler case, only axis-aligned segments.

• We can handle segment with endpoints inside the window easily.

• How can we handle segments that cut the window with no end point inside 
it?



Interval Trees

• Lets simplify the problem:

• Given a set of horizontal intervals, find the set of intervals that contain the 
point 𝑥.

• Trivial solution: 𝑂 𝑛 , surely we can do better.

• Can we use a tree? When does one interval is smaller than another?



Interval Trees

• Idea: the root will contain the intervals which are roughly in the middle.

• Formally, let 𝑥𝑚𝑖𝑑 be the median of all interval end points.

• In the root we will have all the intervals intersecting 𝑥𝑚𝑖𝑑

• To the left, a sub tree with all the 
intervals strictly to the left of 𝑥𝑚𝑖𝑑.

• The same to the right.

𝑥𝑚𝑖𝑑



Interval Trees

• Problem: how do we find which intervals in a node intersects 𝑥?

• Maybe all the intervals intersects 𝑥𝑚𝑖𝑑, thus all are in the same node.

• Do we have the same problem again?

• No, we know all the intervals intersects 𝑥𝑚𝑖𝑑.

• In the example we know that all the end points are
to the right of 𝑥, since 𝑥 is to the left of 𝑥𝑚𝑖𝑑.

• Knowing this, we can solve the problem with two lists
in the node, one for each direction.

𝑥𝑚𝑖𝑑𝑥

Start points

End points



Interval Trees

• What is the complexity of constructing an interval tree?

• We need to sort the intervals - 𝑂(𝑛 log 𝑛).
• Once for all the tree.

• Finding the median takes - 𝑂 𝑛 .

• Constructing the root node - 𝑂(𝑛).

• Constructing the left and right subtrees - 2𝑇
𝑛

2
.

• Since we split by the median there are at most 
𝑛

2
intervals in each tree.

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑂 𝑛 = 𝑂(𝑛 log 𝑛) .

𝑥𝑚𝑖𝑑𝑥



Interval Trees

• Query – find the relevant nodes (as in a BST), and in each node report the 
intersecting intervals.

• Query time – 𝑂(log 𝑛 + 𝑘) .
• Where 𝑘 is the number of reported intervals.

• Space complexity – 𝑂(𝑛).

𝑥𝑚𝑖𝑑𝑥



Interval Trees

• Until now we asked for the intervals intersecting a line.

• But what if instead of a line we have a segment? 

• We look for start points in the area −∞, 𝑥 × [𝑦, 𝑦′].

• We know how to handle points:

• In each node we will have 2𝑑-Range trees instead of lists.

• The query time in the Range trees is 𝑂 log 𝑛 + 𝑘 ,
so 𝑂(log2 𝑛+𝑘) in total.

• Space complexity 𝑂(𝑛 log 𝑛) .

𝑥𝑚𝑖𝑑𝑥



Priority Search Trees

• Recall our last problem:

• Given a set of points find those inside −∞, 𝑥 × [𝑦, 𝑦′].

• The area is not bounded, can we do better than 2𝑑-Range tree?

• We have seen that without the 𝑦 range we can simply use lists and 
report the points starting from the minimum one until reaching 𝑥.

• This means that we don’t need to be able to search on the 𝑥-axis.

• What data structure will allow us to have the 𝑦 data searchable and 
the 𝑥 data traverseable from the minimum value until 𝑥?



Priority Search Trees

• Reminder - Min-Heap:

• Can we find all the elements smaller than some value 𝑥 in 𝑂(𝑘) time?

• Yes, start in the root, and traverse each sub tree with root smaller 
than 𝑥.



Priority Search Trees

• Our full data structure will be a hybrid between a search tree and a 
heap:

• Heap according to the 𝑥 axis, and all the elements in the left sub tree 
are smaller than the elements in the right sub tree (but not 
necessarily smaller than the root). 



Priority Search Trees

• Using this data structure we can look for subtrees fully contained in 
𝑦, 𝑦′ , and inside them look for all the elements inside [−∞, 𝑥]

according to the heap.

• In order to search for 𝑦 and 𝑦′ store the min/max
in each sub tree in each node.

• We also need to check all the nodes in the path.

• Query complexity – 𝑂 log 𝑛 + 𝑘 .
• Without fractional cascading.

• Space complexity – 𝑂(𝑛).
• Reducing the interval tree space complexity

to 𝑂(𝑛).



Non Axis-Aligned segments?

• What about general segments, that is, not axis-aligned?

• We’ll see next week.


